o (/4
- [7’/ | ISI/SR-78-13
o0 ! :/‘ : - May 1978

ARPA ORDER NO. 2223

PROTECTION ANALYSIS:

Final Report

Richard Bisbey

\ Dennis Hollingworih

DDC FiLE coPY

AU NO.——

| This document has beon approved |
L for public reloase aad salo; ilg
= distribution is unlimited,

INFORMATION SCIENCES INSTITUTE

.
=
=
e
=5
3
=
=2
-~
2
s

LSS OB a4 A i G Bt s R

4676 Admirvalty Way] Mavina del Reyf California 90291
Civis ERSITY OF SOUTHIERN CALIFORNIA (213) 8221511

n

5

Jyao

il

R

5

TR B B)i

I

1;

UNCLASS IFIED

SEC,U.RLTY CLASSITICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

€5 REPORT DOCUMENTATION PAGE

EPORTNUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER
| | 'SV/SR-78-13 / o
< R el ot e I—— —
‘\ﬁ},—-pncmmmw:r‘**‘“‘“w S Xf.al =RVPE GF REPORT & PERIOD COVERED
-1

Protection Analysis: Final Reporte Resecarch Y\,f;tflj

D i S ST AT RN PRI SRS

6. PERFORMING ORG, REPORT NUMBER

P

. CONTRACT OR GRANY NUMDER(e) -

7. AUTHOR{S)

Rlchard/Blsbey l]; (15:'
' Dennng/Holllngworth

DAHC’ 15-72-C-9308s . 2
AH O L e Znin

9. PERFORMING ORGANIZATION HAME AND ADDRESS /
USC/Information Sciences lInstitute

L4676 Admiralty Way '

Marina del Rey, CA - 9029i

> AM E NT, PROJ .
AREA & WORK UNIT NUMBE RS

ARPA Order #2223

11, CONTROLLING OFFICE NAME AND ADDRESS K 'il‘ REPORT DATE
. ! May 8781 .-
Defense Advanced Research Projects Agency Wk
i 3. NUMBER OF-PAGES TS

1&09 Wilson Blvd. o O PAGES . T
Arlington, VA 22209 RN S
4. MONITORING AGENCY NAME & ADDRESS(!f diffarent from Controlling Olfice) 1S, SECURITY . (of this report)

""""" Unclassified

154 DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution is
unlimited.

ool aa P

DDC

17, DISTRIBUTION 3TATEMENT (of ‘he abstraci entered In Block 20, I ditlerent izom Report)

19. KEY WORDS (Continue on reverse side If necessmy and identily by dblock number)

azcess control, computer security, error analysis, error-driven evaluation,
error types, operating system security, protection evaluation, protection
policy, software security

20. ABSTRACT (Continus on revetse aic) I nyceseary and identily by block number)

(UVER)

OD 7034 1473 ceoimion oF 1 NoV 45 IS OBSOLETE UNCLASSIFIED

JAN T3
S/M L102-014~ 8601

<§f§?f',/f <;%f<’--i

SECURITY CLASSIFICATION OF THIS PAGE ("!ﬂl Date Bnio/ad) /

K4

/‘7 e

T A N R TR R e e

UNCLASSIFIED
3 SECURITY CLASSIFICATION OF THIS PAGE(When Dale Bntersd)

! 20, ABSTRACT

QlThe Protection Analysis projoet was initiated at ISI by
ARPA IPTO to further understand operating system security
vulnerabilities and, where possible, identify automatable
. techniques for detecting such vulnerabilities in existing
i system software. The primary goal of the project was to
i make protection evaluation both more effective and more
1 economical by decomposing it into more manageable and
methodical subtasks so as to drastically reduce the
requirement for protection expertise and make it as
independent as possible of the skills and motivation of the
actual individuals involved. The project focused on
near-term solutions to the problem of improving the security
of existing and future operating systems in an attempt to
have some impact on the security of the systems which would
be in use over the next ten years.?\\

A general strategy was identified, referred to as
"pattern-directed protection evaluation™ and tailored to the
problem of evaluating existing systems. The aporoach
provided a basis for categorizing protection errors
according to their security-relevant properties; it was
successfully applied for one sunh category to the MULTICS
operating system, resulting in the detection o¢f previously
unknown security vulnerabilities. -

b lokigefilh

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P AGE(When Deia Entersd)

i s el e i i M i el A o

Ll i !

o U L s

R

s il

i, |

ot el b s

Wiehiubatra A S R 25w s b o

1S1/SR-78-13
May 1978

ARPA ORDER NO. 2223

i

¢!

L

al

P YA T A Y% USRI T VY] P T TS ANy
! !
)
b

PROTECTION ANALYSIS:

it i vsiiakhiday

Final Report

bttt) s

Richard Bisbey

Dennis Hollingworth

e ,...__—__,.-————-1
e

T AR R N L T T T WO PP AT ey
[

N ACE < e 14
- L;l"i' Tl y r;
B Ty Laoweraen é
- e * a ;
£ DISTRIBIARIEYARAGUATY COOES | i
3 e :
- ;
g T 2 R O ——
R - i

INFORMATION SCIENCES INSTITUTE

S LG

/ 1 3676 Almival oy Warf Mavina de! Rey[California 50201

= UNIVERS 9F SOUTHERN CALIFORNIA U‘ (213)822-151

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAMCIS 72 C 0306. ARPA ORDER

%
:
d
A
é

LB

= E¥ NO. 2223
< ¥ ygws AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR'S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE
OFFICIAL ORINION OR POLICY OF THE UNIVERSITY OF SOUTHERN CALIFORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH IT

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE. DISTRIBUTION 1S UNLIMITED

4

i d Lo

ien e bR Teer NSRS
' e L L

=

e

ALY L

it

=

¥

i
ligg!

F)

it}
L

¥

CONTENTS

Abstract v
1. Project Background and Context |}
2. Project Description 3
Collection of Raw Error Data 6
Development of Raw Error Patterns 6
Development of Generalized Patterns 7
feature Extraction 8
Comparison Process 10
3. Redirection of Research 12
trror Categorization 13
Analysis of individual Caleguries 13
4. Conclusions and Future Resource Directions 16
References 18
Appendix A 19
Appendix B 21

FIIMED

e Sl

——

5

B B R B w

Bodssbetioie ot it st s

AT bl 1] 4

praul L L SN

e
3
E
E’,

ik

,‘
I
[
|

PRECEDING PAGE BLANK-NOT FILMED

v et LU eSS . .

ABSTRACT

The Proteclion Analysis project was initiated at I1S! by ARPA IPTO to further
understand operating system security vulnerabilities and, where possible, identity
automatable techniques for detecting such vulnerabilities in existing system software. The
primary goal of the project was to make protection evaluation both more effective and
more economical by decomposing it into more manageable and methodical subtasks so as to
drastically reduce the requirement for prolection expertise and make it as independsnt as
possible of the skills and motivalion of the actual individuals involved. The project focused
on near-term solutions to the problem of improving the security of existing and future
operaiing systems in an attempt to have some impact on the security of the systems which
would be in use over the next ten years.

A peneral strategy was identified, referred to as "pattern-directed protection
evaluation” and tailored to the problem of evaluating existing systems. The approach
provided a basis for categorizing proteclion errors according to their cecurity-relevant
properties; it was successfully applied for one such category to the MULTICS operating
system, resulting in the detection of previously unknown security vulnerabilities.

5k o 5 R i s A Y G e v UL g

RS il o ik T o MG e

1
il

L. PROJECT BACKGROUND AND CONTEXT

= Wien general purpose resource-sharing operating systems became available,
- system cuslomers (both povernmental agencies and private firms) naturally wished to '
- exploit fully the cconomies such systems offered in processing sensitive together with N
nonsensitive information. Responding to customers’ pressure, the systems’ 4
manufacturers at first claimed that the hardware and software mechanisms supporting ‘i

resource sharing would also (with perhaps minor alterations) provide sufficient
prolection and isolation to permit multiprogramming of sensilive and nonsensitive
programs and data. A skeptical technical community challenged this claim and proved it
false. Relatively cursory inspection of selected operating systems by “tiger teams” :
(individuals brought topether specifically to attempt o penetrate a target operating E’
syslem) eslablished that the protection oifered fell far short of lhat required it
multipropramming of sensitive and nonsensitive programs and informaticn were to be
permitted [And47], Bran73]. The protection mechanisms funclioned adequately when
uscrs exercised prescribed system functions in approximately the prescribed way, but
could not resist the system penetrator who looked for unusual or extraordinary means
to avoid access checking.

L acking, some of today’s insight and knowledge, various manufacturers attempted
to relrofit their cxisting operating systems for security by simply correcting the
g) individual implementation errors and obvious design oversights that contributed to their
system's sccurity deficiencies, Critical analysis of these systems, however, established
that piccemeal efforts lo secure an existing general-purpose operating system were
unlikely to succced [Abh+76, Att+76, BelW74, HolG74, Mcph74).

] i R ey
U2 1y il

|i

- Out of this early floundering came an appreciatlion that the security problam was
much more difficult to deal with than expected. Furthermore, a number of disturbing
issues surfaced:

1

1. The question of what constituted an appropriale degree of security and how X
thi« is delermined for a computer system had not been adequalely addressed. E
Indred, the notion of security was ilself difficult to formalize in the context of :
compuler syuiems, ie., it was a reacarch issue in its own right., Intuitive

_ statements such as "the system should not allow an unauthorized user to
' access information he had no right to access” somehow had to be translated 3
into speafic asserlions about specific operating system objects, E=

2. No mcthodology existed for insuring that a given system’s design was
complete with respect to a particular security policy which might be chosen,
i.e, that there were not substantial or significant areas where the desired
protection policy could simply be circumvented or ignored.

e b

3. Existing operating systems were poorly structured when it came t< security
- and inlenrity, usually having pgrown from early releases {¢ patched,
N - error-ridden monoliths of interconnected code and tables.

PROJECT BACKGROUND 2

A, Efforts to correct known errors were as likely as not to introduce an equal
number of new errors, merely manifested in other ways. This became
painfully evident during the system penetration activities conducted in
conjunction with security retrotit efforts.

5. Program verification techniques would ultimately have to be applied to insure
thal operating syslem code functioned correctly and according to
specification. However, existing techniques could handle only relatively smal
piecas of code, Ilmited data types, and relatively simple data structuras and
data accessing schemes--nothing within an order uf magnitude of the size end
complexily of an operating system as then structured and implemented.

While these and other issues were troublesome enough with regard to future
systems, they were parlicularly troublesome in light of the large inventory of systems
In the DoD and private sector. It had been suggested that an existing operating system
would have to be restructured if any substantial improvemen! in the securily atforded
was o be effected or if program verification techniques were to be successfully
applied. However, restructuring of an existing system (in many tasss tantamount to
redesign of the system) meant committing substantial resources and rewriting o
considerable amount of code. It was also apparent thal this could be considered only
for a fow special systems such as MULTICS and VM/370, which were already
well-structured with the access control mechanisms at the innermost level of control,

It became obvious thal additional insight into the design and implementation
deficiencies responsible tor operating system security vulnerabililies was necessary. A
much more comprehensive view was required of the number and form taken by such
vuinerabilities. The syslem penetration work performed in the past did iittle to provide
any such collective insight, however; the expertise resulting from such studies consisted
of the individual insighls of a few individuals rather than communicable ideas end
knowledge.

bbb e i St ik o0 mwMﬂuuMmm.auuumm

s L el b L s e

il ot

[

e

M)

h
v

-

W"”“‘i“ [N TR T AR ER T AT

EEL 0

3 THIS PAGE IS BEST QUATITY PRACTICABLE
FROM COPY FURNISHED IQ DDC . e

2. PROJECT DESCRIPTION AND ASPIRATIONS

In September of 1973, the Proleclion Analysis project was initiated at 18] by
ARPA IPTC Lo onhance our undorslanding of operaling system vulnerabilities, expand the
rather sparse knowledpe base on this subject, and, if possible, identity automatable
techniques for deteching vulnerabilities in existing system software. Near-term
solutions to the problem of improving the security of existing and tuture systems were
imporlant if opcrating systems securily research was {o have much impact on the
evstems which wauld be in use over the next len years. It was hoped thal the effort
would yicld a more formahzed knowledpe base on operaling system security, making it
possible to decouple sccurity and operating syslem experlise 1o some degree, ie., to
allow individuals having limited expertise in operating syslem security to effectively
detect system vulnerabilities,

The approach adopled was a significant departure from the protection evaluation
projecls poing on einewhere al that tume, such as those at Project RISOS and at System
Drevelopment Corporalion. These efioris to syslemauze penelration aclivities dealt
prirnarily with the orgarization of the project staff itself rather than the discipline
applicd [Weis/3] They addressed the orgamizational ard traming aspecis of teams of
individuals tasked to analyze operating systems for security vulnerabilities--individuals
who themeaelves would make good “nenelrators® of a given largel eystem, who had not
only an intimate knowledpe of that system but aleo a good understanding of and feel for
protection error po-sibililics.

It was evident that the success of such proups would depend heavily on individual
motivalion as well a« skill in finding prolection errors--an apparant shortcoming when it
came 1o making defititive statements about the validity of the evaluation eflort in which
such an approach was adopted The primary poal of the 1Sl project was to make
protection evalualion both more effective and more economical by decomposing it into
more manageable and methodical sublasks <o as to draslically reduce th¢ raquirement
for ptotrction experlite and make 1t as independent as possible of the skills and
molivation of the actual individuals involved.

A general stralegy was identified which nromised to meet lliese objectives. it
inclyded the following five steps:

I, Collection of "raw” error deccriphions,

2. Rerepreasentahion of raw error descriptions in a more formalized notation
(producing "raw orraor patterns”),

w

Flimination of superfluyous fealires and abstraction of specific system
elements into system-independert clements to develop generalized error
palterne,

4. "Normalization" of the taroet system by extracting the information relevant to
the evaluation and represani=o it in the form required by a “comparison”
procedume.

il il b 11 i bl J Y il |

L

i s s e 1 bl et et

il b AL il il

1 i

sl 022 o 1 1 1

T

A g

PROJECT DESCRIPTION]

5. Ewecution of the comparison procedure.

Tho specific approach adopted--subsequently referred to as "pattern-directed
protection evaluation" [Car+78)--was tallored to the problem of evaluating existing
systems, It differed trom the more general approach principally In that ¢peacific
features of interest wore "extraclad" from the operating system source cods rather
than the entire operating system boing rorepresented in & “"normalized” format
(Figure). Thus, steps 4 and B changed as follows:

4. "Fealurc extraction™: instantiation of generalized fealures and searchas for
instances of those features in the targel operating systom, and the
description of their relevant contexts.

5. Comparizon of combinations of feature instances and thetr contaxts with the
features and relations exprossed in the aporopriate grror patterns.

A major expectation was thal adopting this approach would make it easler to
identify previously undiagnosed errors in given operaling systems. As superfiyous

Development Production

Collected

Operating
Errors

System

Feoture
Extraction
Error
Analysis
Pattern
Matching
Figure 1. Error-driven evaluation process

e
E>

Lyl 1kl
oo b,

gl
ST g

angh

\
h R R

N

©

PROJECT DESCRIPTION 5

features and qualfying details were eliminated and spacific systom fostures replaced by
more generle or abstract features, a more generalized error representation would
cvolve, The process could conceivably result in a hierarchy of orror patterns, with the
mos! peneral and abstractly defined patterns at tha upper levels and the most
specialized and concrele ones al the lower lovels. Subsequent insiantiation of the
poneralized patterns by replacing tho more goneral {eaturos with tholr more spocitic
counterparts In particular classos of oporating systems or particutar functional aross
might be eoxpocted to reveal previously undiscovered operating system errors
(Figure 2).

Major
error types

<>
Build categories
from ercor analysis
+++ generalized patterns .,

Lattice of error patterns
[> Error search procedures
New errors {dentified

ve oo fQw error patterns .,

AYA

tee OTIOrS ,,, €rrors ,,, errors ,,,

Figure 2

A sccond expectation was that this approach might result in an empirically sound
taxonomy of operabing system wvulnarabilities and their causes, which would ba
particularly uscful far aystem designers and implerenters. The derivation of raw
patterns, thewr peneralization, and the instantiation of generahzed patterns toward other
systems and funchonal areas would all add new elements to the lattice of patterns
formed by the relabion "gencralizalion of" and its converse, "instance of,” with the more
abstract patterns al the lop and the more concrele ones at the bottom. As this
structure was enriched with addiional patterns, major substructures might emerge, st
least below some level of abstractness. If, as was also expected, the search techniques
determined to be abpropriate for the patterns of each such substructure woere also
similar, then a reasonable basis would be provided to define major "error types.”

The approach was tested with regard to a part.cuts® error type fraquontly found
in operaling systems, and it proved successtul al uncovering previously undiagnosed
errors in the MULTICS operating system [Bis+75, Bis+76). The specific detells of the
approach and the results and problems which ensued are discussed in the sections
which follow.

e

PROJFCT DESCRIPTION 6

COLLEGTION OF KM ERROR DATA

Prior to this project, little data on known protection error vulnerabliities had
sctunlly been assembled as such in one place. Thus, the lirsl phase of the project
involved developing a sufficiontly rich collection of data on operating systém errors
from ns many oporaling systems as possible to provide a good sampling of the types of
crrors which existed.

Ultimately more than 100 errors thal could be employed directly to penetrate
nxisling operaling systems were recorded in an error dala base; numerous minor
varinhions on these errors were also possible. These errors came from six systems:
TENCX, MULTICS, EXEC- 8, GCOS, UNIX, and 05/360.

The project stall atself was famibar i varying degrees with five of the six
operating systems. They had been direclly involved in penetration work on only three
of thease operaling systems, however, and than in projects which examined the systeams
at widely dittering levels of detail, Consequently, the project had to raly 1o some
extent upon information 1t could gather {rom outside sources, namely other Individuals
invalved tn operahing system penelration studies.

Untortunalely, it wae difficull (0 acquire useful dala on ertors for systoms which
had not been dircclly reviewed by the stall. Perhaps the major difficulty was the
unavailabibty of .any owverall information about operating system vulnerabilities,
principally because most installalions were reluctant to air weakhesses that might
subscquenlly be explated by individuals inside as well as outside their organizations.
Another significant dificulty also arose whose principa! impact was folt in the
develepment of raw error patterns; it is discuszed in the following r action,

DEVELOPMENT OF RAW ERROR PATTERNS

Given a raw error descriphion, the next step was to formulate an appropriate raw
error pattern, a redescription of the error in terms specific to its source operating
system bul v the form of predicates that express “condilions," properties of or
relations among, dishinct objects or features of that system. During this process those
aspocts of the milial description superfiuous to the actual error itself were sliminated.
The "condilion sot™ of a raw pattern was a minimal set of conditions in the sense that if
any weare removed the raw patiorn would no longer represent a potential error,

However, from a particular raw error doscription, it was often extremely difficuit
to wrile down a paltern that saliztactorily caplured the essence of the error. First, of
courss, the ercor description had to be thoroughly comprehended, e.g., In terms of how
the error zould be exploited by a knowladgeable penetrator. This required substantial
familiarity with and sulficient information on the operating system conlext in which it
occurred. Unfortunately, even where such information was available, the errors were
somclimes described W a rather incomplote fashion or in a fashion which presumed
substantial knowledpe about specific low-level details of the system implementation.
This was further complicated by the lack of a common vocabulary for describing both
functional elemente of the system as well as the particulars of a given security
deficiency, requiring some conjecture on the part of the staff as to the exact
circumstances of the problem.

bl

PROJECT DESCRIPTION 7

Despite these complications, the staff generally was fairly successtul in
ascertaining what appeared to be the significant characteristics of the error from the
available documcntation. Even with that, however, it was not always clear precisely
what policy was being violated and thus what conditions should constitute the pattern.
In some cases, in which equally valid policies could be postulated, the same raw error
appeared to lead to more than one pattern,

This process did not appear to be inordinately difficult in the case of the first
pattern processed, "Inconsistency of a Single Data Value over Time." The relevant
characteristics of such errors were readily apparent, as manifested in the various
examples in the error data base. Thus, the textual description of a given instance of
the error type was successfuily rerepresented in a raw pattern for which superfiuous
details had been eliminated. This is illustrated by the following raw error description
and derived raw error pattern taken from an early version of MULTICS [Bis+75]

Raw Error Description: STOP-PROCESS-ERROR

ST10P-FPROCESS is a supervisor procedure for halting processes. The user can call the
procecdure with the process-id of the process to be stopped. The user entry to this
procedure checks thal the D is that of the caller, then calls the traffic controller
termination routine. The user can modify the value of the process-id between the time
it is checked and the time it is passed to the traftic controller.

Raw Error Pattern:

1. Procedure "STOP-PROCESS” is invoked by a user process to halt a specified
process as indicated by a user-supplied parameter.

2. The "STOP-PRQOCESS" interface checks thal the user-supplied process-id
parameter is valid.

3. The traffic-conlroller termination routine uses the process-id to identify the
appropriate process.

4. The user process mav modify the checked parameter between the times of (2)
and (3).

DEVELOPMENT OF GENERALIZED PATTERNS

As an error scarch criterion, a raw patlern is directly applicable only to operating
systems that sharc the policy violated by that error and in which the features of that
paltern are known by the same names. Even then, it may apply only to a particular
functional area such as input/output control, and miss similar errors in other areas such
as inlerprecess communication, To broaden the applicability of a pattern, its expression
must be generalized by substituting more generic names or more abstract features for
morc specific ones or by deleling qualifying details without affecting the essence of the
conditions themselves. The same concept, such as the call on a privileged system
procedure by an unprivileged ucer procedure, may be known by different names (such
as "MME,"” "JSYS," and "SVC") in different systems. Classes of similar objects, such as
! yles or blocks of physical storage, pages, segments, variables, structured variables,

Bk W e e i A e b L B S S

Vg i b i S it g g . s i S e e el

PROJECT DESCRIPTION 8

and files (to give an extreme example), can be regarded as instances of a more abstract
object, in this casc the "abstract cell," something that has a name and holds information
(its value). The benelit of generalizirg is that the generalized pattern applies to
correspondingly wider class of errors in a wider class of systems.

Generalization of the raw pattern for the inconsistency error examples yielded
the following error pattern and corresponding security policy statement:

Generalized Error Pattern:

B:M(X) and for some operation L occurring before M,
[for operation L which does not modify Value(X),
Value(X) before L NOT = Vzlue(X) before M}, and
Value(X) after L NOT = Value(X) before M.

Informally staled, process B performs operation M on variable X and the valus of X at
the time opcration M is performed is not equal to the value of X either before or after
some operalion L which occurs before M.

Corresponding Operating System Security Policy Statement:

(BMX) => for some operation L occurring before M, either
[tor operation L which does not modify Value(X),
Value(X) before L = Value(X) before M], or
Value(X) after L = Value(X) before M.

Intuitively stated, process B (which presumably performs some critical tunction) can
perform operation M on variable X only if the value of X at the time operation M is
performed is equal to the value of X either before or after some operstion L which
occurs before M.

FEATURE EXTRACTION

Detecting orrors in a set of target information implies some kind of comparison
process between the target and the correctness or error crileria. The comparison
nced nol be direct; various transformations may be applied, as practical, to eithar the
criteria or the targat to bring them into a suitable form, as long as essential properties
are preserved. In the case of pattern-directed protection evaluation, the target is a set
of opcrating system source programs and specifications; the criteria are the ervor
patterns; and the comparison process is essentially one of "pattern recognition,” in the
sense of an ability to detect instances of errors embedded or camouflaged in a system,

Conceplually, the ideal tool is a general-purpose “protection evaluator,” a
computer program that not only could be applied to a wide class of operating systems
but could also reiiably detect a wide class of errors. The inputs to such a progrem
would be representations of the patterns for the error types covered, together with a
representation of the target operating system. The program would compare the target
representation with the given patterns by searching it for al! combinations of features
rclated in one of the ways specified in some pattern, and would report every such
combination found. In this concept, protection evaluation would seem to consist of two
subtasks:

M e e R

¥
5
&
i

R i o e

|
i

RSP B SR B s R il

PROJECT DESCRIPTION 9

1. "Normahzing” the target system by extracting the information relevant to the
evaluation and representing it in the form required by a comparison
procedure.

2. Executing the comparison procedure.

Such an idecal is clearly out of reach, however. There exists no model into which
the prolection-relevant features of an existing system can be mapped and in which they
can be relaled for comparison with given patterns, general enough to spply to wide
classes of errors and systems. It is even difficult to determine with precision which
elements of existing systems are relevant to protection and which are not.

Nevertheless, the goal of developing pattern-directed techniques and tools to
sysiematize and automate protection evaluation might be achieved with a somewhat
altered approach. This becomes evident when one investigates what the two major
requircments for protection evaluation techniques imply about their form, application,
and dcvelopment.

The firel requirement, that of general-purposeness with respect to operating
systems, carriec an obvious implicalion: there must exist some generalized set of
terminology- a “comparison language™--in which the techniques are specified and in
which the error patterns are expressed. To apply these techniques to a given system,
it is necessary tha! a correspondence be established between the objects and
terminology of the comparison language, i.e., between the features of the given patterns
and their instantiations in the target system. Either the features of the patterns must
be instantiated to the concepts, objects, and terminology of the target system or the
target system must be represenlied in terms of the comparison language, or an
intermediate comparison framework must be established and transformations performed
in both directions. If no error possibililies are to be overlooked, then all the instances
of a given pattern feature in the target system must be identified.

It one uses the term “features™ to refer to objects that have concrete and
typically localized representations in the tarpet system description (e.g., variables,
proccdure calls, critical paramelers), then identifying the relevant features in the target
system is only part of the problem. The other part is to determine whether any of the
relalions among these fealures are those indicated by the conditions of an error
pattern. The requirement that evaluators need not have a talent for recognizing
prolection errors and that difficult patlern-recognition processes must not be involved,
makes it essential that the search for an error be decomposed. The search through the
target system code (or some rcpresentation of it) for a single dispersed collection of
instances of features in some given relation must be replaced. Instead we must require
only independent searches for individual instances of fealures in the target system.
This implies, of course, that the output of these searches must include simple
specifications of the contexts in which the feature instances were found. The needed
fealure context is determined from the relations expressed in the patterns and is used
to determine whether the features found actually satisfy these relations. Thus, the
single integrated search step is replaced by a two-step procedure, the first of which is
more amenable to automation, while the second is probably best performed manually.
While the analysis of the relations among features is not avoided, it is deferred to a
more convenient point in the process where the feature-set to be considered is greatly
reduced in size.

P SR P

PROJECT DESCRIPTION

In the case of the inconsistency errcr, the feature extraction process was applied
to a particular instantiation of the error type involving the consistency of user-supplied
parameters in the MULTICS operating system. To find instances of the error in code, &
pattern was formed using the Error Statement above, which was then instantiated for
identifying inconsistent parameter usage. The Error 3tatement requires the existence
2 of two operations, both of which refer to a common variable X. The first operation, L,

: either fetches the -value of the variable or gensrates a3 new value. The second
operation, M, fetches the value of the variable. Other information conteined in the
Error Stalement includes the fact that L occurs before M and that M performs some
critical function. These statements give rise to the {ollowing pattern elements:

1. An operation L which either fetches or stores into a cell X,
2. An operation M which fetches cell 7.

3. Operation M is critical,

=
k
=

4. Opcralion L occurs before operation M.

For this particutar error, X is instantiated to a parameter, and thus the following
additional pattern slement is derived:

————

5. A procedure B which is interdomain-callable by user procedures and which
accepis a parameter X,

This pattern ultimately resulted in the following search procedure intended to
recognize, for cach parameter, executable sequences of store or fetch operstions
{ollowed by a felch operation:

e A e ol 1 1
(e |

1. Filter out everything except procedures which are interdomain-caeilable by
users,

2. Of these, identify those with parameters.

3. For each parameter, idenlify and output all instructions or statements which

A bt R ot e S

; involve store or fetch operations on the parameter. ¥
1' 4. Identify and oulput all instructions or statements which contain flow of control ﬁ
& operators. ﬁ
B This procedure was subsequently automated and applied to MULTICS with g

significant success, resulting in the detection of a number of cendidate errors [Bis+76) 4%

o

3

COMPARISON PROCESS

The search output constitutes the input to a separate, methodical comparison
process in which the properties of the feature insiances found are examiied to
determine whether actual error conditions exist. Obviously, the comparison is still not
direct. since a translation must be made between the generalized relstions expressed in
the patlerns and the descriptions of feature instances provided es input. Again, In

Efl e s e b B

WWW' M T T A

{

i

PROJECT DESCRIPTION i1

general the choice must be made between expressing the searth results in the
comparison language and instantiating the reference properties. The former is required
for a system- independent comparison algorithm,

A
)

In the case of the inconsistency error, that comparison was handied manually.
The fcature matches were examined manually to determine if the second operation was
in fact critical. Forty-seven procedures were examined in the- MULTICS -system. Of
these, seven were observed to have one or more errors; five other procedures had
malcnes for which “criticality” of the second fetch could not be determined due to lack
of system documentation.

R VL (e

it Miﬁbil A“ n -.‘ f,»".‘A o i \",5',."

'lﬁ S

0TI 0 Tl e et ol
I
ik

|
3

Wb B T8 L L

.

Slbapg

AR AL

]
71:, I
#
i

s

E:
5
ERQ
%
>

12

3. REDIRECTION OF RESEARCH

In September 1975 the research direction was significantly moditied to conform to
revised schedule and resource considerations. The major problem with the
pattern-direcled approach (detailed analysis and relating of error characteristic from
the botlom-up) was that the process was hoth time-consuming and extremely tedious; it
consumed & subslantial amounl of the project’s resources while yielding few
demonstrable results. The sponsor questioned whether or not the protection analysis
process was bounded--i.e, whether the number of error categories was both tinite and
small enough to warrant the expenditure of the resources required. The project was
asked to postulate the highest level error categories directly from the existing error
dala baseé--to categorize the entries in the error data base in some appropriate fashion
based upon lthe analysis performed to date. We were to subsequently work from the
postulated error categories o develop automatable search strategies rather than
pursue the pattern-directed approach of gradually building up a set of empirically basad
calegories. It was thought that we might short-circuit some of the more time-consuming
elements of the pattern-directed approach, directly identifying an appropriate set of
error types without having to devnte much effort to analyzing individual errure. The
process was expected to be iterative, possibly leading to a set of nonoverlapping error
calegories which could be precisely defined and which covered the known protection
vulnerabilities in exisling operating systems and ultimately to viable search techniques
for identifying instances of the error categories in target operating systems. Thus, the
earlier approach as characlerized by Figure 2 was supplanted by that represented in

Figure 3 below.

Postulated
error categories

Postulate categories
to cover all errors

AT

i i b s ek sirm s e

D Error search patterns
Refined error categorids

Py SR

- 4 E
’ S \\ \
p errors .. JeirorsV. ., errors ;.4 errors .).
“oor’ s N\ /
~ = an v {‘ - o -) Y- s
Figure 3

Various difficultics were encountered along the way--unexpected problems which
further altered our approach and perspective as to the most appropriste strategy for
achieving the original goals. They are mentioned below in the discussion of the specific

steps in the revised process.

Bl L i ke o PR ot it

REDIRECTION OF RESEARCH 13

ERROR CATEGORIZATION

A
[}

As a consequence of the error-pattern activities the errors collected in the error
data-base had already been redescribed in a self-consistent fashion. Thus an attempt
was made to directly identify a set of categories which covered the recorded set of
protection errors. These categories were to serve the purpose of grouping like error
types for in-depth study and analysis. The expeclation was that the cetegories vioula
be refined as the analysis process proceeded until a final set of highly representative,
nonintersecting catogories was identified.

[T (T RT A MR]

Ten calegories were identified which seemed to cover all the errors which were
documented and which did not exclude any known error types. Unfortunately. the ten
calcgories seemed to manifest themselves at differing levels of abstraction; thus, it was
assumed that this would not be the final set of categories, that some would be absorbed
by more abstrac! categories or possibly be a basis for new calegories when additional
analysis had becn completed. The categories are briefly described in Appendix A.

|
I
oot et it 5 BB 0 s e i “*“uﬁ

ANALY SIS OF INDIVIDUAIL CATEGORIES

a0t bbbl U L s

After an inilial set of categories had been identified, attention was directed
toward analyzing individual categories to gain additional understanding into the
associaled operaling system securily vulnerabilities, allow refinement of the categories,
and accommodate the identification of search techniques for given error types. The
categories which first received attention were those which appeared to be the most
tractable and manifested themselves at the less abstract levels of system object : :
- representation. The error type "Inconsistency of a Single Data Value over Time,"
’ pursued under the pattern-directed work, had been particularly tractable and facilitated :
identification and imptementation of specific tools for identitying errors of this type in H
existing operating systems. The results of our efforls on that error type suggested T
- that a quite comprehensive semi-automated search could be conducted for such errors H
- in a given operaling system. It was hoped that the same would hold true ¢or other
error types.

FRTR

TR e

e LB b

Analysis of the sccond error category led to a somewhat different result, however. In
studying the error category “Validation of Operands® it became apparent that the
[objects under consideration were much less tangible than those dealt with in the
P “Inconsistency.." document. The definition of an operator or operand depended
I primarily on the level of abstraction on which the operating system was being
represented, and the necessary validation was generally at a comparable level {Carl76).

A general strategy was devised for reviewing an operating syslem for errors of o
this type, and the requisite tools were identified. However, the analysis of this error -
type brought into sharp focus the requirement for research in the area of program)
verification, since the objectives of program verification and the requisite sffort in
diagnosing errors of this type were quite similar, With this error type it became
apparent that the formalization and abstractions that were part and parcel of verifying
an operating system were also important in identifying points where validation of

critical conditions had not taken place or had been implemented improperly.

Determination and analysis of the cumulative eftect of conditions and results along

v relevant control paths as is addressed in the area of program verification is also
required in identifying points where incomplete validation has occurred,

W‘WEWMW‘E‘W&T i
‘

mmmm;‘{"xi'w“w‘yu W g

it il

REDIRECTION OF RESEARCH 14

The third crror type analyzed was that of residuals, i.e., information left over in
an object wher the object is deallocated from one process and allocated to another.
Residuals repicsented the first error type which had a particularly concrete
manifestation in terms of operating system objects (data left undestroyed in a
deallocated cell) as well as being a highly intuitive error type. However, it was evident
from the outset that the causes of residual errors might well result from other typas of
errors and that this category might eventually be absorbed by one or more categories
handled later on [HolB76]). A strategy for identifying sources of residual errors
anicnable to partial automation was identified but once again it became apparent that
successful identification of the causes of residual errors in operating systems would
require sophisticated tools involving symbolic program execution and controt flow
analysis as well as possibly application of program verificati_n techniques in order to

determine the paths and condition sets that mighi result in bypassing of code intended
to clear data cells on deallocation.

The fourth and tinal error type undertaken was that of serialization. Treatment
of this error type launched the project into consideration of the fundamental notions of
program structure, opcrator synchronization, principles ot programming practice, etc.,
and it became quite difficult to identify a viable search strategy. As a side effect, it
became immediately evident that the error type "Interrupted Atomic Operations” was o
special manifostation of this error category and should be trealed in the same context.

A major conscquence of work on the aforementioned error types was that it
became apparent that the original ten error categories might be reforn.ulated in a more
meaningful way in terms of the following four global error categories:

1. Domain Errors
2. Validation Errors
3. Naming Errors

4. Serialization Frrors

The remainder of the ten error types (with the exceplion of the operator

sclection errors) presented earlier seem either to fall into or split across the four (ypes
shown in Table 1.

Of these four categories, two (serialization and validation) were addressed
explicitly as a result ol the woirk on the ten originally hypothesized error types; the
other two (naminpg and domain errors) were parlially covered through the snalysis of
one of the remaining error types (allocation/deallocation residual errors). However, the
bulk of the examples associated with the latter two categories have not been addressed
at any greater detail than was required to group them into their respeclive categories.
Thus, while we believe that the four general categories end their respective
subcategories identitied represent a useful and represenlative grouping of example
errors and a basis for more directed analysis, it is possibie that further study and

- analysis would result in an even more insightiul error classification set.

Appendix B summarizes the four documents produced by the project which
address the aforementioned error types.

e o o b

o AL

‘.4MM‘M

e L e L e b e o Ll |

bl it) ki kA 0 “;m:.m“...‘mmmnm*MW;«-@W i

REDIRECTION OF RESEARCH

Nawing Ervors

Accoss
Residual
Errors

Originally
Catalogued
Naning
Errors

Sevialization Krrors

Mulliple
Reference
Errors

Interrupted
Atomic
Oporator
Errors

Originally
Catalogurd
Serialization
trrors

15

TABLE |

Validation Errors

Queue
Management /Boundary
Errors

Originally
Calaiogued
Validation
Errors

Domain Errora

Exposcd
Representation
Errors

Attribute
Residual
Errors

Composition
Residual
Errors

Originally
Catalogued
Domain
Errors

. ‘ i ““ il

e o kb i

A L St tkladh Wit A

i

16

4. CONCLUSIONS AND FUTURE RESEARGH DIRKECTIONS

In genceral, the technical community has continually underestimated the ditficulty
of the security problemy; we feel that the PA effort was no exception, It has proved
surprisingly difficull to diagnhose proteclicn error vulnerabilities, much iess design
techniques for detecting them, However, while the PA project is terminating ot ISI we
feel thal work might be profitably continued in the original area of pattern-directed
protection evalualion despite the inherent difficulties. This approach proved quite
successful for the case in which it was taken to completion and we feel thet it should
prove equally successtul in others. Frogress occurs at its own rate, however; research
of this type is painfully slow. Much thrashing about and some talse starts must be
allowed for if real progress is to be made in this Citficult research ares; the desire to
produce useful resuits quickly can be counterproductive to the total effort.

The PA project has had its principal impact in exiending the knowledge base and
general understanding of operating system protection vuinerabilities, relating apparently
unrclated example errors in terms of those common characteristics which result in o
socurity vulnorability. In addition, it has identified some general procedures which will
be valuable in detecting future security system vulnerabilities. Finally, the PA project
has, along with other efforts, made the user communily increasingly aware of the
amount of effort and the extensive cost involved in producing a system which has even
a remote chance of providing a reasonable degree of security in an open environment,
Unfortunately, it has also become apparent that the commercial sector is unwilling to
bear this cost at the present time - that there is no apparent commercial market tor
systems with the development costs, reduced performance and usage and environmenta!
constraints that must. be accepted if secure processing is {0 ake place. Consequently,
fhe procedures developed by this project will probably be of little benefit to the
commercial sector and of only marginal benefit to the military sector at this time. They
will find application only when we decide that the value of data security and personal
privacy are greater than the price we must pay for secure data processing.

The analysis of identified error types was particularly useful in identifying some
appropriate research and development activilies in the area of data security,
particularly with tespect to the types of tools required if protection avaluation is to
become automatabic. Tools of the sorl described in the "Data Dependency Analysis®
document will be needed in much of the evaluation activity, bul might be constructed so
as to be gencralizable across systems and programming languages.

During the research efiort one thing that became evident was the role of program
verification lechniques in detecting operaling system security vulnerabilities. It is hard
to see how truly definitive statements about the security afforded by an opersting
system c¢can ever be made untit PV techniques have been applied. However, certain
unscitled issuecs about the appropriate application of PV techniques to 0.5. security
analysis supgest that research in protection evaluation might be profitably continued in
parallel with research in PV, principally to insure that PV is applied at appropriste
levels of operating system representation, thal mapping between levels is handled
properly, and that the operating system is represented in sufficient detail to insure that
security vulnerabilities do not go undetected.

T P RE RO PR L A R RERE TP

i 0 Lt s L W i),

teasmae] | kel e

Ll e bt M B e

iy ot adldlid oh

bl ik o |

T‘H"W"ﬂ‘mm"“ I gy .W
I
I
!
I
|
|
[
i
|
I
|
|
i
\
|
|
\
I
|
I
|
\
|
|
|
I
|
[
il
I
I
I
|
|
|

e 1| e |

E CONCLUSIONS 17
2
ff As a final footnote to this rescarch effort we offer the following comment for
; those who are optinustic about near-term improvement of the data security problem,
o Our insight into and awareness of security vuinerabilities has tended 1o vastly exceed
- our progress in detecting and correcting them, There are stit difficull research
- probloms lo be attacked in the area of PE in particular and data securlly research in
- general. In the course of addressing these research problems there will undoubltedly
- be much tioundering and some abortive starts, Progress can be expected to be painful

and stow in final disposition of the security problem, particularly since such work seems

to involve delving into the basic premises of programming theory and practice.

§

s .

gilted 4 DL e o s B T TR R

AR ' 2 B A it

R A AN g s

[in

1

18 E:

REFERENCES 3
i Abb+76 Abboll, R P. et al, Seourity Analysis and Enhancements of Computer
A Operating Systems, National Bureau of Standards Institute tor Computer
Sciences and Technology, NBSIR 761041, April 1976,
And+71 Andorson, J. P, R. L. Bisbey, D, Hollingworth, and K. W, Uncapher, Computer =
4 Secursty Experiment (U, The Rand Corporation, WN=-7276-ARPA, March 1971 =
4 (Secrel). 3
; At1476 Aftanasio, C. R, P. W. Markstein, ard R. 5 Phillips,"Penetrating an Operating .
e System: A Study of VM/320 Integrily," IBM Systems Journal, 15, January
; 1976, pp. 102-116 2
. BelW74 Belady, L. A, and C. Weissman, "Experiments with Secure Resource Sharing *
for Virtual Machines," Proceedings of the International Workshop on Protection <

in Operating Systems, August 1974, pp. 27-33. 2

4 Bis+75 Bisbey, Richard, I, G. Fopek, and). Carlstedt, Protection Errors in Operating ;
Systems: Inconsistency of a Single Data Value Over Time, Informstion Sciences
Institulo, 1SI/SR-78~4, Dacember 1975.
Bis+76 Bisbey, Richard, I ot al, Data Dependency Analysis, Information Sciences

institute, ISI/RR-76-45, February 1976, ;

Bran73 Oranstad, D, “"Privacy and Protoction in Operating Systems,” Computer, f

January 1973, Y

Car+75 Carlstedl, J et al, Pattern Directed Protaction Evaluation, Informaetion ‘

Sciences Institute, ISI/RR-75-31, June 1975,

e :
Y4 g KAS i s ¢ b T Bt

Carl76 Carlstedt, J, Protection Errors in Qperating Systems: Validation of Critical
Conditeons, Information Sciences Institute, ISI/SR-76-6 , May 1976.

Carl78a Carlstedt, J, Protection Errors in Operating Systems: A Selected Annotated
Bibliography and Index to Terminology, Information Sclences institute,
ISI/5R-78-10, January 1978.

<

P

Cart78b Carlstedt, J, Protection Errors in Opcrating Systems: Serialization, Information
k: Sciences Institute, I1SI/8R-78-9, April 1978,

vkl i il 4

3 HolB76 Hollingworth, D. and R. Bisbey H, Protection Errors in Operoting Systemnd:
3 Allocation Deallocation Residuals, Information Sclences Institute, ISI/SR-76-7,

AX

June 1976. ﬂ

E (.

HolG74 Hollingworth, 0. and S. Glasman, WWMCCS/CCOS 11I; Security Analysis of =

3 Master Mode Entey Procrssing, The Rand Corporation, WN(L)-8749-DCA, July X
2 1974, ,.
- B L
E Mcph74 McPhee, W. S, "Operating Syslem Integrity in OS/VS2," IBM Systems Journal, 3
13, 1974, pp. 230-252.

b

W

Weis73 Weissman, C,, System Security Analysis/Certification Methodology and Results,
System Development Corporation, SP-3728, October 1973.

e g

19

APPENDIX A

1. Contistoney of data ovor time

Opcrating systems continuously make proloclion-related docisions based on deta
valuas contained within the systom data base as well as on values which have been
submilled to and validatod by the system.

In ordor tor a corract protection decision to be made (in tho absence of other
types of protoction orrors), the data must be in a consislent state, and remain In a
specific relationship with other data items during tho interval in which the protection
decision is made and the corresponding action taken.

2. Validation of oprrands

Within an operating sysiem, humerous vperators are responsible for malntalning
the system's dala base and for changing the proloction stale of processes or objects
known o the system. Many of theso operators are critical In the senso that it invalid
or unconstralned dota are presented to thom, a protaction error results.

Y. Residuals

A penerally accopled error type is that of the "residual," Le., intormation which is
"lefl over" in an object when the object is deallocated trom one process and sliocated
to another, Several types of residual errors exist, including the following:

1. Access residuals; Incomplete tevocation or deallocation of the acregs
capabilities to the objact or coll.

2. Composilion residuals: Incomplete destructior of the cell's context with other
cells o5 abjocts,

3. Data residuals: Incomplete destrustion of old values vithin “he cell.

4. Naming

Namos are used within oporating systems to distinguish ob ects irom one another,
There are many ways in which name binding errors can lead to protection orrars. For
oxample, often the naming scheme does not have enough resolution (or dnes not use
thal resolution) lo distinguish properly hetwoen ramed objects, This resc’ts in those
errors lypificd by a user creating an ambiguity by naming dbjects with thie same name
as a previously named (or about to be named)} object with the systen, as a result,

referencing the wrong cbiect,

5. Domain

A domain is an authority specification over ar object or sel of objects (ususlly
thought of in terms of an address space). Enforcemont of domains is typicall, limited to
tho resoiution of the hardware protection mechanism provided by the coimputer. Many

‘ L o i
b Dl et il Loy A ki “m

|
1ih

E
—3

i

b b, B sttt b o sbnats, kel ool e

sad Gy s, £

3

H
3
=
E}

APPENDIX A 20

ol the errors In operating Systems are the direct result of one of two types of
domain-relaled arrors:

1. Information associatod with the wrong domain,

2. Incorracl enforcement al domain crossing.

6. Serialization

Within any opcrating system, there are resources to which the operating system
must not only conlrol access, bul also prevent concurrent use or otherwlise entorce
orderly use. This problem, known as “serialization," is of particular importance In
mulliprogramming systems whare serialization errors often resull in protection errors,

7. Interruptod Momic Oporations

Several prolection errors have appeared in which the enforcemant of a
prolcction policy wa. based on the assumed uninterruptability of an oporation. In each
of the cases, the operation was in {act interruptable, rosulting in a protection evror,

8. Evpoewd Representations

1o cach vser, an operaling system presents an abstract machine consistiag of the
hardware user inctruction sel plus the poeudo-instructions provided through the
supervisor call/invocation mechaniam. The pscudo-instruclions, in general, sliow the
user to manipulate abstract objects for which representations and operations are not
provided in the basic hardware instruction set. Inadvertent cxposure by the system of
the representalion of the abstract object, the prinutive instructions which implament the
pscudo-instructions or the data structures involved in the manipulstion of the ahstract
object can sometimes result in protected information being made accessible to the user,
thereby resulting in a protection orror,

9. Quene Management NDependencies

This error type broadly includes those errors characterized by improper or
incomplete handlin, ol boundary conditions in manipulating data structares such as
system queucs or tables. The consequence is generally a system crash or lockup
resulting in gross denial of soervice. We distinguish this from legivimate denial of service
conditions when the system is merely overloaded, but still functioning according to the
scheduling algorithm design spetifications.

10. Critical Operatar Selection Frrors

This error type includes those errors in which the implementer invoked the wrong
funclion, statement, or inslruction resulting in the program performing the wrong
function, In a sense, this is a calch-all category, since every programming error ¢an
ullimaloly be so0 classitied,

21

APPENDIX B

The purpose of this appendix is to provide a context for reading the respective
error deteclion papers.

Inconsistency of a single data value

A common crror in contemporary operating systems is the assumed consistency
of operands between multiple uses. If an operand can be modified between two uses
by a program and the second use relies on an attribute referenced in or set by the first
usage, an error results, Multiple usage of a single operand often occurs during
validation/use sequences where an operand is first validated and subsequently used in a
computation. Numerous variations exist that make locating instances of the error
difficuit. For example, the operand can be referred to by different names, or the uses
may be containcd in textually disjoint routines.

Two patterns for finding inconsistency errors are as follows:
l1a. Find any sequence of REFERENCE .. REFERENCE to a common operand,
T:). Find any sequence of STORE ... REFERENCE to a common operand,
whenever
2. the operand can be modified between the pair of operators.
Detection of Inconsistency Errors. Outlined below is a set of searzh strategies for
tinding. consistency crrors based on detecting possible instances of condition la or 1b,

Large portions ¢an be automated.

Consider the possible storage classes that operand A can take with respect to the
routine containing the two references. They are limited to one of the following three:

1. Alocal
2. A parameter
3. A global

Case 1: Local Operand

if the operand is local (in the sense that no other routine can access it), then the
error cannot occur and, thus, no search technique is needed.

Case 2: Parameter Operand

if the operand is a value parameler, then, since it is copied at invocation time nto
a local variable within the routine in question, it can be treated as 4 local operand as in
Case 1. If the operand is a name or reference parameter, the following search strategy
applies:

1. For each parameter within a routine, find all reference and store instructions
to the parameter.

gm‘.uuwmm&wm veon it A A B A S i 0 e s i A AL i

Lo il oo g e e S o s A NS

APPENDAIX B 22

2. For the routine, find all control flow operators.

3. For any REFERENCE .. REFERENCE or STORE .. REFERENCE on a control path
{determined by the control flow operators found in 2), examine the pair to

determine if the second reference operation relies on an attribute referonced
or stored by the first operator.

4, For any contial path that allows a single REFERENCE to be executed
iteratively, determine if the second execution of the RLFERENCE relies on an
attribute referenced by the first execution.

The ahove procedure finds all possible occurrences of the error for paremeter
operands. Steps | and 2 can easily be implemented by computer program.

Case 3: Global Operand

If the opcrand is a global, then it can be accessed by multiple routines. The
following search strategy applies:

1. For each global, find all reference and store instructions to the global.

2. Find all the control flow operators.,

3. For any REFERENCE ... REFERENCE or STORE .. REFERENCE on a control path

examine the pair to determine if the second reference operation relivs on an
attribute referenced or stored by the first.

4. For any conirol path that allows a single REFERENCE to be executed
iteratively or recursively, determine if the second execution o! the
RIFERINCF relies on an attribute referenced by the firsi execution.

Note that, with one exception, this is the same search strategy used for
paramelers. The difference is that, for globals, multiple execution of » single instruction
can also result from recursion. Otherwise, the procedure is identical, and in fact the
same code used to detect potlential inconsistency errors for parameters cen also be
used o detect potential inconsistency errors for globals.

The above search strategies find all possible consistency errors. A more detailed
description of Inconsistency Errors can be found in Bis+75.

Validation

Validation of opcrands is one of the more basic functions performed in operating
systems, it constitutes one of the more basic error types. Validation can take a variety
of forms, from checking that an integer subscript is within the bounds before allowing
an array access operator to proceed, to checking tihal a set of properties such as the
time - of-day and the caller’s access rights hold for an operation to be performed. No
single evaluation approach seems adequate to deal with the wide variety of validation
found in conlemporary systems and information a protection evaluator may have
available for performing the evaluation task. As such, two approaches for finding

validation errors have been identitied. The prolection evaluator may choose either or a
combination of both.

e i i i et

ki

L Bl o

Lot Ll

i 5 o bkt

£ b, !

s Lo bl AL

11 gt i Rl

ARSI RICRPER

o el st tdasitn L

L b bttt bt ol el Db L

i 2ol

L e Bl

;E
3

TEPURTENT T PRI

APPENDIX B 23

The first requires the protection evaluator to be 2ble to recognize an invalid
condition for an operand. It begins with the sources of data needing validation, finds
the operators which use such data (i.e., the-. which are potentiai candidates for
validation errors), and computes the wvalid .'.n condition holding for a given
opcrator foperand. A prolection evaluator must then judge the adequacy of the validity
condition for the given operator. The second approach begins with operators and
validalion conditions which must hold and determines if the conditiens are actually
enforced by the code. It requires the evaluator to be able to identify all critical
operators and specify their associaled validation conditichs before proceeding with the
evaluation,

Ontside-1o-Inside Approach. A purpose of validation is to prevent privileged system
operators from operating on incorrect/unvalidated operands. Externally-supplied user
data constitules such a source. They enter the system in a variety of ways. Direct or
indirect parameters o supervisor subroutines constitute one large source. Others
include mutually agreed upon mail boxes, communications areas, or files. The operating
system is responsible for insuring that this data is properly checked before a system
operator uses it.

Onc approach for determining the adequacy of validation is to begin at the
user/system interface and calculate the validity conditicns for all user-supplied data at
various operators within the system. This can be done as follows:

1. ldentify all data entry points inlo the system. (At all such points, data can
enler the system ihat needs {o be validated.)

2. For cach data cntry point, calculate data flow paths through the system. All
operating system variables o which the entering data is directly or indirectly
assighed must be recorded.

3. bxamine all operators referencing a variable identifiad in (2) above. Verify
that the validily condition enforced on each data path leading to that
operator/operand is sufficient.

Step 2 can be automated using data dependency analysis or a modified torm of
symbolic execcution. Steps | and 3 must be done manually. 1t is important to not: that
without delailed semantic information describing operations being performed, any
procedure, such as the above, can only tell an evaluator where to look for errors, but
nol what to look tor.

Inside-te-Ouiside Approach. Suppose a proteclion evaluator can identify all critical
operators in the system and can specify for each operator the validity condition that
must hold for the successful completion of that operator. The problem of finding
validation errors then amounts to determining the sufficiency ot validation code on ail
paths leading to that operator. A procedure for checking suificiency would be as
follows:

1 ldentify the crilical operations within the operating system and the necessary
conditions associated with those operations. Record the condition with the
associated operand.

~

i an operand is a local or a parameter, follow all possible control paths
leading from the operation to determine the data paths leading to the critical
operalion. In passing in a reverse direction through code that enforces

[ERT—

S

Mﬂ% R po s e B

oo

il i

it ol e i R e e

da

APPENDIX B 24

portions of the validation condition, discard the enforced condition,
Eventually, one of the following will occur;

a. All conditions are enforced for that control path.

b. Al conditions are not enforced upon reaching a user/system interface,
i.e., a validation error can be caused by supplying a value outside the
range of the remaining unenforced condition,

c. The control path terminates at 2 global variable/parameter interface
within the system. Go to 3.

3. If the operanc is a global or formal parameter from 2¢, all operators modifying
the global/v.irameter must contain as an output condition the validity
condition a<.ocialed with the respective variables. They become critical
opcrators to be evaluated by this same algorithm,

A more detailed description of validation errors can be found in Carl76.

Residuala

A common security probiem is the residual--data or access capability left after
the complction of a process and not intended for use outside the context of that
process, If a residual becomes accessible to another process, a security error may
result, A major source of such residuals is improper or incomplete
allocation/dealloc ation processing.

Probably the most widely recognized type of residual is the data residual in
which some property of the data associated with a cell is not disposed of upon
reallocation. One typically thinks of content residuals, i.e., residuals where the cell
content is retained after reallocation. Data residuals can, however, involve other cell
attritutes. Such allribules can include cell size, cell location, and the physical
rclationship of the cell to other cells. While not representing as high a corimunications
bandwidth as the content residuals, these lalter forms of data residual can also
represent significant security errors.

The following, procedure for finding data residuals is based on identitying the cell
alloc ation/deallocation routine in which residual prevention code should be contained. It
consisls of four basic steps:

1. Identify all cell types found in the syslem. This can be done by manuelly
listing various storage inedia and cells on that media and by examining system
data declarations.

2. For rcach cell, identify its particular freepool, i.e., the bufiers for cell
resources botween deallocation and allocation.

3. For cach freepool, identify allocation/deallocation code by finding all symbolic
references to ihe freepool.

4. For oach allocation/deallocation routine, determine if a data residual can
occlur,

4

b b N A st

bt A e,

i

‘ ‘ . \
e sl e bl 5 L e

=

n
2
3
B
3

Chemll

2wl

o
b Ll e . L

I
wal

| o
ST

Ltk

il debeails

APPENDIX B 25

A second major type of residual is the access management residual, sometimes
known as a “dangling teference.” Unlike data residuals that deal with the various
altributes of a coll, access management residuals deal with the access paths used to
reference a cell, their creation and destruction.

Access paths are, at some level of representation, simply data stored in speciat
cells (c.g., bounds registers, PSW's, segment/page tables, capability cells, etc.). Thus,
techniques similar to those described above for tinding content residuals will also find
cerlain types Jf access residuals, ie, those caused by incomplete deallocation of an
access path created by an allocation routine. Access management residuals ditfer from
content residuals in an important aspect. Therc may be multiple access paths to a
given cell, all ot which must be deallocated. Furihermore, access paths can be created
by other than the formal allocation routines. For example, code that copies an existing
access path produces an access path which must also be accounted tor at deallocation.
Similarly, special instruclions may exist (e.g., the IBM 370 “"LOAD-REAL-ADDRESS™) that
produce access palhs as a result of invocation, or that can be interrupted causing an
access path to be stored for use when the instruction is reinvoked. Thus, in addition to
the above procedure, onc must examine the system for these latter three sources of
access paths and account for the paths at cell deallocation,

A more detailed description of Residual errors can be found in HolB76.

Serinlization

Serialization errors represent one of the broader categories investigated, As
such, the error has numerous manifestations and can be described in a variety of ways
including ordering specifications; interoperation communication and insuring the proper
use of communication channels; mulual exclusion for preserving object integrity; and
mutual exclusion for the noninterference of non-atomic operations.

Three distinct approaches for detecling scrialization errors are:

1. Analyze the target svstem macroscopically and informally for the adequacy of
each of a list of serialization provisions. The problem with this approach is
that no actual algorithm is suggesied by the serialization provisions for
deciding, when serialization errors do or do not exist.

2. Determine potential concurrencies, and, given these, determine whether any of
them (taken pairwise) represent access cunflicts,

3. Acsume all access sequences to sharable objects are c-itical and represent
potentially conflicting concurrencies untess these are made impossible sither
by explicit invocations of serialization mechanisms or by other serializing
program logic. The problem with this approach is that it detects a great
many access intervals that are not serialized in an obvious manner, and one
must then resort to deeper analysis such as that in (2).

Each approach is discussed in greater detail along with suggested ways for
allevialing deficiencies in Carl 78,

N s, bk

Sioh B

i

bl 1A A B e v, 5 bt el T L0 it o) -t i Wil 1 i

4
3
3
3
5
3
g

